Search Results

You are looking at 1 - 1 of 1 items for

  • Author: Stephen Worrell x
Clear All Modify Search
Jeongin Son The Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park PA, USA
Department of Discovery Protein Science, Amgen Inc., South San Francisco, California, USA

Search for other papers by Jeongin Son in
Google Scholar
PubMed
Close
,
Jacob T Bailey The Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park PA, USA
Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA

Search for other papers by Jacob T Bailey in
Google Scholar
PubMed
Close
,
Stephen Worrell The Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park PA, USA
University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA

Search for other papers by Stephen Worrell in
Google Scholar
PubMed
Close
, and
Adam B Glick The Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park PA, USA

Search for other papers by Adam B Glick in
Google Scholar
PubMed
Close

Objective

UV irradiation of the skin induces photo damage and generates cytotoxic intracellular reactive oxygen species (ROS), activating the unfolded protein response (UPR) to adapt or reduce these UVB-mediated damages. This study was designed to understand the role of the UPR mediator IRE1α in the antioxidant response following UVB irradiation of mouse skin and keratinocytes.

Methods

We used mice with an epidermal deletion of IRE1α and primary mouse keratinocytes to examine effects of UV on different parameters of the antioxidant response in the presence and absence of functional IRE1α.

Results

In the absence of IRE1α, PERK activity and protein levels are significantly compromised following UVB irradiation. Additionally, the loss of IRE1α suppressed phosphorylation of the PERK target, nuclear factor erythroid-2-related factor 2 (NRF2), and NRF2-dependent antioxidant gene expression after UVB irradiation. Interestingly, IRE1α-deficient keratinocytes exhibit elevated basal ROS levels, while a robust ROS induction upon UVB exposure is abolished. Because UVB-induced ROS plays an essential role in regulating skin inflammation, we analyzed recruited immune cell populations and the expression of pro-inflammatory cytokines, Il-6 and Tnfα, in mice with epidermally targeted deletion of Ire1α. Following UVB irradiation, there was significantly less recruitment of neutrophils and leukocytes and reduced expression of pro-inflammatory cytokine genes in the skin of mice lacking IRE1α. Furthermore, keratinocyte proliferation was also significantly reduced after chronic UVB exposure in the skin of these mice.

Conclusion

Collectively, our findings indicate that IRE1α is essential for basal and UVB-induced oxidative stress response, UV-induced skin immune responses, and keratinocyte proliferation.

Significance statement

These findings shed new light on the protective function of IRE1α in the response to UV. IRE1α plays an important role in the regulation of ROS, PERK stability, and antioxidant gene expression in response to UVB in mouse keratinocytes and epidermis.

Open access